Tone Dissimilation in Tenyidie

Savio Meyase

University of Leipzig

savio.meyase@uni-leipzig.de

**Claim:** In this research I look at tonal alternations in Tenyidie (Angami) and claim that the said alternations are a result of phonological dissimilation. Furthermore, I propose that the dissimilations are due to the Obligatory Contour Principle (OCP) (Leben, 1973). Suffixation in the language shows tone polarity of a novel and peculiar kind observed for the first time in a language with more than two tones. The study of suffixation tries to show that polarity in linguistics is an epiphenomenon of dissimilation, rather than a process *sui generis*, joining in the debate started by Kenstowicz et al (1988). Dissimilation is also seen in at least one instance of prefixtation.

**Data:** Tenyidie has four level tones – Extra High /È/, High /É/, Mid /È/, and Low /È/ (Blankenship et al, 1992; Meyase, 2014). There are three classes of suffixes: first, those that simply surface consistently with one of the four tones in all contexts; second, those where the suffix always show up with either Extra High or High; and third, those where the suffix always show up as Mid or Low. The second and third classes show the natural division of the four tones into the two higher and the two lower tones and this follows the assumption of tonal features as in (1).

<table>
<thead>
<tr>
<th>Register</th>
<th>+Upper</th>
<th>–Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch/Tone</td>
<td>+high</td>
<td>–high</td>
</tr>
<tr>
<td>Extra High</td>
<td>High</td>
<td>Mid</td>
</tr>
</tbody>
</table>

The second class of suffixes has the pattern in (2), exemplified with the progressive /-zÈ/.

(2)

<table>
<thead>
<tr>
<th>Stem</th>
<th>Register</th>
<th>Tone</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Upper</td>
<td>[+Upper]</td>
<td>[+high]</td>
<td>3È (‘wrap’ + PROG)</td>
</tr>
<tr>
<td>-Upper</td>
<td>[-Upper]</td>
<td>[-high]</td>
<td>3È (‘be with’ + PROG)</td>
</tr>
<tr>
<td>+Upper</td>
<td>[+Upper]</td>
<td>[+high]</td>
<td>3È (‘sell’ + PROG)</td>
</tr>
<tr>
<td>-Upper</td>
<td>[-Upper]</td>
<td>[-high]</td>
<td>3È (‘sleep’ + PROG)</td>
</tr>
</tbody>
</table>

Here the suffix is Extra High when it follows a [+high] stem and High when follows a [-high] stem. This alternation is predictable under the assumption that these suffixes are underspecified for only [+Upper] and assimilate in [±high] to the preceding tone.
But in the third class, while [-Upper] is specified for the suffix, the alternation of [±high] in the suffix is seen as a phenomenon of cross-featural polarity where the [±high] value is the polar opposite of the [±Upper] in the stem, as in (3).

\[(3)\]
\[zé + lie = zé liè \text{ (‘wrap’ + IRREALIS)}\]
\[[+Upper] [+Upper] [-Upper] [+high] [-high] \]
\[zé + lie = zé liè \text{ (‘be with’ + IRR)}\]
\[[+Upper] [+Upper] [-Upper] [-high] [-high] \]
\[zé + lie = zé liè \text{ (‘sell’ + IRR)}\]
\[[-Upper] [-Upper] [-Upper] [+high] [+high] \]
\[zè + lie = zè liè \text{ (‘sleep’ + IRR)}\]
\[[-Upper] [-Upper] [-Upper] [-high] [+] [+high] \]

**Proposal:** I propose a reanalysis for this apparent polarity pattern that does not rely on a powerful mechanism like alpha-rules (Gregersen, 1974), following Kenstowicz et al (1988) and de Lacy (2012). For this purpose I use a new representation (4) following Hyman (1993) using only H and L, but recursively.

\[(4)\]

\[\text{Extra High: } \sigma \quad \text{High: } \sigma \quad \text{Mid: } \sigma \quad \text{Low: } \sigma\]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[\text{σ Tonal Root Node} \quad \text{σ Tonal Node}\]

The polarity in (3) follows as an OCP-driven epenthesis under the assumption that tones can be associated from one node to the other as long as they do no cross planes. Epenthesis of \((\circ_H)\) takes place to counter the OCP of two successive \((\circ_L)\) and is then associated to the higher node.

\[(5)\]

\[zè/zè lie \quad zè/zè liè\]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[\text{H/L L L} \quad \text{H/L L H L}\]